质量不计的直角形支架两端分别连接质量为m和2m的小球A和B.支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面

质量不计的直角形支架两端分别连接质量为m和2m的小球A和B.支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面内无摩擦转动,如图所示.开始时OA边处于水平位置,由静止释放,则(  )
A.A球的速度最大时,角BOA的角平分线在竖直方向
B.A球的速度最大时,两小球的重力势能之和最小
C.A 球的速度最大时,A球在其运动圆周的最低点
D.A球的速度最大时,B球在其运动圆周的最高点
风之琴 1年前 已收到1个回答 举报

duguxunhu 幼苗

共回答了15个问题采纳率:73.3% 举报

解题思路:AB两个球组成的系统机械能守恒,但对于单个的球来说机械能是不守恒的,根据系统的机械能守恒列式可以求得AB之间的关系,同时由于AB是同时转动的,它们的角速度的大小相同.

ACD、根据题意知两球的角速度相同,线速度之比为vA:vB=2:1;
当OA在数值方向左侧且与竖直方向的夹角为θ时,由机械能守恒得:
mg•2lcosθ-2mg•l(1-sinθ)=[1/2]2m
v2A+[1/2]m
v2B
又vA:vB=2:1;
解得:
v2A=[8/3]gL(sinθ+cosθ)-[8/3]gL
由数学知识知,当θ=45°时,sinθ+cosθ有最大值,A球速度最大,此时B球与水平面上側且成450,故ACD错误;
B、A球速度最大时,B球的速度也最大,根据系统的机械能守恒可知,两小球的总重力势能最小,故B正确.
故选:B.

点评:
本题考点: 机械能守恒定律.

考点点评: 本题关键找两个球整体机械能守恒;同时可以根据线速度与角速度的关系公式v=ωr进行分析计算.

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.012 s. - webmaster@yulucn.com