如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.

如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60°,过点C作CM∥BP交PA的延长线于点M.
(1)求证:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面积.
cgf362253540 1年前 已收到1个回答 举报

zlf0315 幼苗

共回答了27个问题采纳率:85.2% 举报

解题思路:(1)根据圆周角定理由∠APC=∠CPB=60°得∠BAC=∠ABC=60°,则△ABC是等边三角形,所以BC=AC,∠ACB=60°,再由CM∥BP得到∠PCM=∠BPC=60°,有可判断△PCM是等边三角形,得到PC=MC,∠M=60°,易得∠PCB=∠ACM,然后利用“AAS“可判断△ACM≌△BCP≌△ACM;(2)由△ACM≌△BCP≌△ACM得AM=PB=2,则PM=PA+AM=3,由于△PCM是等边三角形,于是可根据等边三角形的性质计算其面积.

(1)证明:∵∠APC=∠CPB=60°,
∴∠BAC=∠ABC=60°,
∴△ABC是等边三角形,
∴BC=AC,∠ACB=60°,
∵CM∥BP
∴∠PCM=∠BPC=60°,
又∵∠APC=60°,
∴△PCM是等边三角形
∴PC=MC,∠M=60°,
∵∠BCA-∠PCA=∠PCM-∠PCA,
∴∠PCB=∠ACM,
在△ACM和△BCP中,


∠BPC=∠M
∠PCB=∠MCA
CB=CA,
∴△ACM≌△BCP≌△ACM(AAS),

(2)∵△ACM≌△BCP,
∴AM=PB=2,
∴PM=PA+AM=1+2=3,
∵△PCM是等边三角形,
∴△PCM的面积=

3
4CM2=
9
3
4.

点评:
本题考点: 圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理;圆心角、弧、弦的关系.

考点点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等边三角形的判定与性质、三角形全等的判定与性质.

1年前

3
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.037 s. - webmaster@yulucn.com