两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排

两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,若an=145,则n=______.
1223330 1年前 已收到1个回答 举报

cynthia118 幼苗

共回答了14个问题采纳率:92.9% 举报

解题思路:根据题目所给出的五角形数的前几项,发现该数列的特点是,从第二项起,每一个数与前一个数的差构成了一个新的等差数列,写出对应的n-1个等式,然后用累加的办法求出该数列的通项公式,然后代入项求项数.

a2-a1=5-1=4,a3-a2=12-5=7,a4-a3=22-12=10,…,由此可知数列{an+1-an}构成以4为首项,以3为公差的等差数列.
所以an+1-an=4+3(n-1)=3n+1.
a2-a1=3×1+1
a3-a2=3×2+1

an-an-1=3(n-1)+1
累加得:an-a1=3(1+2+…+(n-1))+n-1
所以an=a1+3
n(n−1)
2+n−1=1+
3n(n−1)
2+n-1=
3n2−n
2.
由an=
3n2−n
2=145,解得:n=−
29
3(舍),或n=10.
故答案为10.

点评:
本题考点: 等比数列的通项公式;等差数列的通项公式.

考点点评: 本题考查了等差数列的通项公式,解答此题的关键是能够由数列的前几项分析出数列的特点,即从第二项起,每一个数与前一个数的差构成了一个新的等差数列,本题训练了一种求数列通项的重要方法--累加法.

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 1.698 s. - webmaster@yulucn.com