(2011•仙桃)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶

(2011•仙桃)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)直接填写:a=______,b=______,顶点C的坐标为______;
(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
内卫xx 1年前 已收到1个回答 举报

捣乱x03 幼苗

共回答了20个问题采纳率:75% 举报

解题思路:(1)将A(-3,0)、B(1,0),代入y=ax2+bx+3求出即可,再利用平方法求出顶点坐标即可;
(2)首先证明△CED∽△DOA,得出y轴上存在点D(0,3)或(0,1),即可得出△ACD是以AC为斜边的直角三角形.
(3)首先求出直线CA的解析式为y=k1x+b1,再利用联立两函数解析式即可得出交点坐标,再利用若点P在对称轴左侧(如图②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH得出答案即可.

(1)a=-1,b=-2,顶点C的坐标为(-1,4);

(2)假设在y轴上存在满足条件的点D,过点C作CE⊥y轴于点E.
由∠CDA=90°得,∠1+∠2=90°.又∠2+∠3=90°,
∴∠3=∠1.又∵∠CED=∠DOA=90°,
∴△CED∽△DOA,∴[CE/ED=
DO
AO].
设D(0,c),则[1/4−c=
c
3].变形得c2-4c+3=0,解之得c1=3,c2=1.
综合上述:在y轴上存在点D(0,3)或(0,1),
使△ACD是以AC为斜边的直角三角形.

(3)①若点P在对称轴右侧(如图①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.
延长CP交x轴于M,∴AM=CM,∴AM2=CM2
设M(m,0),则(m+3)2=42+(m+1)2,∴m=2,即M(2,0).
设直线CM的解析式为y=k1x+b1


−k1+b1=4
2k1+b1=0,解之得k1=−
4
3,b1=
8
3.
∴直线CM的解析式y=−
4
3x+
8
3.
联立

y=−
4
3x+
8
3
y=−x2−2x+3,解之得

点评:
本题考点: 二次函数综合题.

考点点评: 此题主要考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.013 s. - webmaster@yulucn.com