八年级下册数学三角形几何题如图,在四边形adbc中,AB与CD相交于O,AB=CD, E,F分别是BC,AD的中点,连接

八年级下册数学三角形几何题

如图,在四边形adbc中,AB与CD相交于O,AB=CD, E,F分别是BC,AD的中点,连接EF,分别相交DC,AB于点M,N,是判断△OMN的形状,并说明理由.(16分)

zhang0314269 1年前 已收到3个回答 举报

我的静恩 花朵

共回答了18个问题采纳率:88.9% 举报

△OMN是等腰三角形,理由如下:
取BD的中点G,连接EG、FG
∵E是BC的中点,G是BD的中点
∴EG是△BCD的中位线
∴EG∥CD,EG=1/2CD
∴∠OMN=∠GEF
同理可得:FG∥AB,FG=1/2AB
∴∠ONM=∠GFE
∵AB=CD
∴EG=FG
∴∠GEF=∠GFE
∴∠OMN=∠ONM
∴OM=ON

1年前

5

xxxx 幼苗

共回答了87个问题 举报

为等腰三角形,
(提示:取AC中点P,连结PF,PE,可知PE=AB/2,且平行,同理PF=CD/2且平行
即PE=PF,即有底角相等,根据平行可知△OMN两底角相等,即等腰)

1年前

2

floatingdust 幼苗

共回答了2个问题 举报


取BD得中点K,连接EK,FK 令∠KFE=∠1 ∠KEF=∠2 ∠NMO=∠3 ∠MNO=∠4

因为E,F分别为BC,AD的中点,即AF=DF,CE=BE

因为AF=FD,DK=BK

所以FK为三角形ABD的中位线 即FK∥AB 2FK=AB(定律自己想)

所以 ∠1=∠4(。。)

同理因为CE=BE,BK=DK 得出EK∥CD 2EK=CD

所以∠2=∠3(。。)

又因为AB=CD

所以FK=EK

所以∠1=∠2

得出∠3=∠4

所以三角形OMN为等腰三角形。

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 19 q. 0.095 s. - webmaster@yulucn.com