勾股定理练习题1.如图1,在△ABC中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AC=10,求AD的长.

勾股定理练习题
1.如图1,在△ABC中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AC=10,求AD的长.
2.如图2,在△ABC中,∠C=90°,AD是BC上中线,DE⊥AB于点E.试证明AC^2=AE^2-BE^2.
游乐儿1999 1年前 已收到3个回答 举报

拉住青春的尾巴 幼苗

共回答了11个问题采纳率:81.8% 举报

1.设CD为X,
在△ABD中,AD²=BA²-BD²
在△ACD中,AD²=AC²-CD²
因此可得:BA²-BD²=AC²-CD²,
代入数得 17²-(9+X)²=10²-X²,
解方程:得出x,即求出CD的值
再代入三角形中,即求出AD的值
2.(1)在△ACD中,∠C=90° 由勾股定理得 AC²=AD²-CD²
(2)在△AED中,∠AED=90°由勾股定理得 AD²=AE²+ED²
(3)在△BED中,∠BED=90°由勾股定理得 ED²=BD²-BE².
因为AD是BC上中线 BD=CD
把(2)、(3)式代入 (1)整理可的AC²=AE²-BE²

1年前

1

1ii1 春芽

共回答了22个问题采纳率:81.8% 举报

1.设CD为X, 在三角形ABD中AD的平方等于BA的平方减去BD的平方
在三角形ACD中AD的平方等于AC的平方减去CD的平方
有因此有 BA的平方减去BD的平方等于AC的平方减去CD的平方,
代入数得 17的平方减去9与X的和的平方等于10的平方减去X的平方,
解方程可求出X。即是CD
再在三角形ADC中用勾股定理可求出AD...

1年前

1

781231 幼苗

共回答了2个问题 举报

2.在△ACD中,∠C=90° 由勾股定理得 AC^2=AD^2-CD^2. (1)
在△AED中,∠AED=90°由勾股定理得 AD^2=AE^2+ED^2. (2)
在△BED中,∠BED=90°由勾股定理得 ED^2=BD^2-BE^2. (3)
因为AD是BC上中线 BD=CD
把(2)、(3)式代入 (1)整理可的AC^2=AE^2-BE^2.

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 18 q. 0.015 s. - webmaster@yulucn.com