设平面向量a=(√3,-1),b=(1/2,√3/2),若存在实数m(m≠0)和角θ,其中θ∈(-π/2,π/2),使向

设平面向量a=(√3,-1),b=(1/2,√3/2),若存在实数m(m≠0)和角θ,其中θ∈(-π/2,π/2),使向量c=a+(tan^θ-3)b,d=-ma+b*tanθ,且c⊥d
(1)求m=f(θ)的关系式
(2)若θ∈[-π/6,π/3],求f(θ)的最小值,并求出此时的θ值
td1234 1年前 已收到1个回答 举报

aafl 幼苗

共回答了20个问题采纳率:90% 举报

a=(√3,-1),即:|a|=2
b=(1/2,√3/2),即:|b|=1
a·b=√3/2-√3/2=0
1
m⊥n,即:m·n=(a+(tanQ^2-3)b)·(-ma+tanQb)
=-m|a|^2+tanQ(tanQ^2-3)|b|^2
=-4m+tanQ(tanQ^2-3)=0
即:m=tanQ(tanQ^2-3)/4
即:m=f(Q)=tanQ(tanQ^2-3)/4,Q∈(-π/2,π/2)
2
Q∈[-π/6,π/3],即:tanQ∈[-√3/3,√3]
令:t=tanQ,则:t∈[-√3/3,√3]
即:g(t)=t(t^2-3)/4=(t^3-3t)/4
g'(t)=3(t^2-1)/4
g'(t)=0,则:t=1或-1(舍去)
1

1年前 追问

2

td1234 举报

请您看题回答 不要到百度上复制粘贴 谢谢

举报 aafl

和答案一样
是对的

td1234 举报

题目中没有m⊥n这个条件 题目不一样

举报 aafl

那好吧我无能为力
顶多被管理员推荐罢了,不好意思哦
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 18 q. 0.082 s. - webmaster@yulucn.com