如图1,抛物线C1:y=ax2+bx+2与直线AB:y=[1/2]x+[1/2]交于x轴上的一点A,和另一点B(3,n)

如图1,抛物线C1:y=ax2+bx+2与直线AB:y=[1/2]x+[1/2]交于x轴上的一点A,和另一点B(3,n).

(1)求抛物线C1的解析式;
(2)点P是抛物线C1上的一个动点(点P在A,B两点之间,但不包括A,B两点),PM⊥AB于点M,PN∥y轴交AB于点N,在点P的运动过程中,存在某一位置,使得△PMN的周长最大,求此时P点的坐标,并求△PMN周长的最大值;
(3)如图2,将抛物线C1绕顶点旋转180°后,再作适当平移得到抛物线C2,已知抛物线C2的顶点E在第四象限的抛物线C1上,且抛物线C2与抛物线C1交于点D,过D点作x轴的平行线交抛物线C2于点F,过E点作x轴的平行线交抛物线C1于点G,是否存在这样的抛物线C2,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在请说明理由.
football007 1年前 已收到1个回答 举报

abakd 幼苗

共回答了18个问题采纳率:88.9% 举报

解题思路:(1)把点A(-1,0)、B(3,2)代入抛物线y=ax2+bx+2求出a、b的值,故可得出抛物线的解析式;
(2)设AB交y轴于D,故可得出D点坐标,由此可得出OA,OD,AD的长,进而求出△AOD的周长,再根据PN∥y轴,可知∠PNM=∠CDN=∠ADO,由相似三角形的判定定理得出Rt△ADO∽Rt△PNM,故可得出
C△PNM
C△AOD
=[PN/AD],用PN表示出△PMN的周长,故可得出当PN取最大值时,C△PNM取最大值,设出PN两点的坐标,根据m的取值范围即可得出结论;
(3)设E(n,t),由题意得出抛物线C1,C2的解析式,再根据E在抛物线C1上可得出t的表达式,由四边形DFEG为菱形可知DF=FE=EG=DG,连接ED,由抛物线的对称性可知,ED=EF,故△DEG与△DEF均为正三角形,故D为抛物线C1的顶点,求出D点坐标,由DF∥x轴,且D、F关于直线x=n对称可得出DF的长,再根据△DEF为正三角形即可得出n的值,进而求出t的值,故可得出E点坐标.

(1)∵A(-1,0)、B(3,2)在抛物线y=ax2+bx+2上,


a−b+2=o
9a+3b+2=2 ,
解得:

a=−
1
2
b=
3
2 ,
∴抛物线的解析式为y=-[1/2]x2+[3/2]x+2;

(2)∵设AB交y轴于D,则D(0,[1/2]),(如图1)
∴OA=1,OD=[1/2],AD=

5
2,
∴C△AOD=
3+
5
2,
∵PN∥y轴,
∴∠PNM=∠CDN=∠ADO,
∴Rt△ADO∽Rt△PNM.

点评:
本题考点: 二次函数综合题.

考点点评: 本题考查的是二次函数综合题,涉及到用待定系数法求二次函数的解析式、菱形的性质、等边三角形的判定与性质等相关知识,难度较大.

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.012 s. - webmaster@yulucn.com