已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求CB1与平面A1AB所成角的正弦值;
(3)求二面角A-A1B-C的余弦值.
zlc888 1年前 已收到1个回答 举报

冒娃 幼苗

共回答了19个问题采纳率:89.5% 举报

解题思路:(1)由已知条件推导出平面A1ACC1⊥平面ABC,BC⊥AC1,AC1⊥BA1,由此能够证明AC1⊥平面A1BC.
(2)以C为坐标原点建立空间直角坐标系,利用向量法能求出CB1与平面A1AB所成角的正弦值.
(3)求出平面A1AB的法向量和平面A1BC的法向量,利用向量法能求出二面角A-A1B-C的余弦值.

(1)∵A1在底面ABC上的射影为AC的中点D,
∴平面A1ACC1⊥平面ABC,
∵BC⊥AC且平面A1ACC1∩平面ABC=AC,
∴BC⊥平面A1ACC1
∴BC⊥AC1
∵AC1⊥BA1且BC∩BA1=B,
∴AC1⊥平面A1BC.
(2)如图所示,以C为坐标原点建立空间直角坐标系,
∵AC1⊥平面A1BC,
∴AC1⊥A1C,
∴四边形A1ACC1是菱形,
∵D是AC的中点,
∴∠A1AD=60°,
∴A(2,0,0),A1(1,0,
3),B(0,2,0),
C1(-1,0,
3),C(0,0,0),B1(0,2,
3),


A1A=(1,0,-
3),

AB=(-2,2,0),

CB1=(0,2,
3),
设平面A1AB的法向量

n=(x,y,z),


n•

点评:
本题考点: 用空间向量求平面间的夹角;直线与平面所成的角;与二面角有关的立体几何综合题.

考点点评: 本题考查直线与平面垂直的证明,考查直线与平面所成角的正弦值的求法,考查二面角的余弦值的求法,解题时要注意向量法的合理运用.

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.017 s. - webmaster@yulucn.com