如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°

如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°
(1)求证△ACF∽△BEC
(2)设△ABC的面积为S,求:AF*BF=2S
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明
成研所研发oo 1年前 已收到4个回答 举报

yejin_bao12 幼苗

共回答了24个问题采纳率:83.3% 举报

(1) 由∠ACF=∠ACE+∠ECF=∠ACE+45°、∠BEC=∠ACE+∠A=∠ACE+45°得∠ACF=∠BEC,另有∠A=∠B,证得△ACF∽△BEC.
(2)题目有误,应为AF*BE=2S.
已证△ACF∽△BEC,则AF/AC=BC/BE,得AF*BE=AC*BC=2S.
(3)以线段AE、EF、FB为边的三角形为直角三角形.证明如下:
已知△ABC为直角等腰三角形,则AB²=2AC²,已证AF*BE=AC²,
故:AB²=2AF*BE,
即:(AE+EF+FB)²=2(AE+EF)(EF+FB),
化开:AE²+EF²+FB²+2(AE*EF+AE*FB+EF*FB)=2(AE*EF+AE*FB+EF*FB)+2EF²
得:AE²+FB²=EF²,所以该三线段构成直角三角形.

1年前

10

风舞秋阳 幼苗

共回答了21个问题采纳率:76.2% 举报

(1) AB=BC则角A=B=45°,角ACF=90°-角BCF,角BEC=180°-角B-角BCE=180°-角B-角ECF-角BCF=90°-角BCF=角ACF,所以△ACF相似于△BEC,
(2) 1)知△ACF相似于△BEC,AC/AF=BE/BC,所以AF*BE=AC*BC=2s
(3) AE、EF、FB为边的三角形为直角三角形。证明如下:
已知...

1年前

2

小雨uu 幼苗

共回答了126个问题 举报

1.
证角BCE=∠ACF=90°-∠BCF
2.
由相似证AF*BF=AC *BC
3.将△CAE绕C顺时针旋转90°.....给提示,不懂加百度HI

1年前

1

aifuxuan 幼苗

共回答了1个问题 举报

楼上和这个是我的
1) AB=BC则角A=B=45°,角ACF=90°-角BCF,角BEC=180°-角B-角BCE=180°-角B-角ECF-角BCF=90°-角BCF=角ACF,所以△ACF相似于△BEC,
(2) 1)知△ACF相似于△BEC,AC/AF=BE/BC,所以AF*BE=AC*BC=2s
(3) AE、EF、FB为边的三角形为直角三角形。...

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 21 q. 0.470 s. - webmaster@yulucn.com