如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.

如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.

(1)求证:AD=AE;
(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:DF−EF=
2
AF

(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.
难得薇子 1年前 已收到1个回答 举报

战神暴雨 幼苗

共回答了16个问题采纳率:81.3% 举报

解题思路:(1)首先根据∠B的正切值知:AE=2BE,而E是BC的中点,结合平行四边形的对边相等即可得证.
(2)此题要通过构造全等三角形来求解;作GA⊥AF,交BD于G,通过证△AFE≌△AGD,来得到△AFG是等腰直角三角形且EF=GD,由此得证.
(3)辅助线作法和解法同(2),只不过结论有所不同而已.

(1)证明:∵tanB=2,
∴AE=2BE;
∵E是BC中点,
∴BC=2BE,
即AE=BC;
又∵四边形ABCD是平行四边形,则AD=BC=AE;

(2)证明:作AG⊥AF,交DP于G;(如图2)
∵AD∥BC,
∴∠ADG=∠DPC;
∵∠AEP=∠EFP=90°,
∴∠PEF+∠EPF=∠PEF+∠AEF=90°,
即∠ADG=∠AEF=∠FPE;
又∵AE=AD,∠FAE=∠GAD=90°-∠EAG,
∴△AFE≌△AGD,
∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;
∴FG=
2AF,且DF=DG+GF=EF+FG,
故DF-EF=
2AF;

(3)如图3,
①当EP≤2BC时,DF+EF=
2AF,解法同(2).
②当EP>2BC时,EF-DF=
2AF.

点评:
本题考点: 平行四边形的性质;全等三角形的判定与性质.

考点点评: 此题主要考查的是平行四边形的性质以及全等三角形的判定和性质,难度适中,正确地构造出全等三角形是解答此题的关键.

1年前

6
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 2.396 s. - webmaster@yulucn.com