△ABC中,∠BAC=∠ACB。

△ABC中,∠BAC=∠ACB。
(1)如图,E是AB延长线上一点,连接CE,∠BEC的平分线交BC于点D,交AC于点P,求证:∠CPD=90°- ∠BCE;(2)若E是射线BA上一点(E不与A、B重合),连接CE,∠BEC的平分线所在直线交BC于点D,交CA所在直线于点P,∠CPD与∠BCE有什么关系?请画出图形,给出你的结论,并说明理由。
czylcd 1年前 已收到1个回答 举报

行在水上 幼苗

共回答了18个问题采纳率:94.4% 举报

(1)证明:∵EP平分∠BEC,
∴∠BEP=∠CEP.△ACE中,∠A+∠ACE+∠AEC=180°,
∵∠ACE=∠ACB+∠BCE,且∠A=∠ACB,
∴2∠A+2∠BEP+∠BCE=180°,
∴2(∠A+∠BEP)+∠BCE=180°,
∵∠CPD=∠A+∠BEP,
∴2∠CPD+∠BCE=180°,
∴∠CPD=90°- ∠BCE;
(2)结论:∠CPD= ∠BCE,
理由如下:设∠CAB=∠ACB=α,
∵ED平分∠BEC,∴∠BED=∠CED,
设∠BED=∠CED=β,
则∠CEB=2β,
分两种情况:i)若点E在BA上(E不与A、B重合,
如图,∵∠ACE=∠ACB-∠BCE,
∴∠ACE=α-(2α-2β)=2β-α,
∴∠BCE=∠ACB-∠ACE=α-(2β-α)=2α-2β,
∵∠CPD=∠CED-∠ACE,
∴∠CPD=β-(2β-α)=α-β,
∴∠CPD= ∠BCE;
ii)若E在BA的延长线上,
如图,∵∠ACE=∠CAB-∠CEB,
∴∠ACE=α-2β,
∴∠BCE=∠ACB+∠ACE=α+(α-2β)=2α-2β,
∵∠CPD=∠ACE+∠CEP,
∴∠CPD=α-2β+β=α-β,
∴∠CPD= ∠BCE,
综上,可知∠CPD= ∠BCE。

1年前

6
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.028 s. - webmaster@yulucn.com