(2014•聊城一模)给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“

(2014•聊城一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0),其短轴的一个端点到点F的距离为
3

(Ⅰ)求椭圆C及其“准圆”的方程
(Ⅱ)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的相异两点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
单人舞曲 1年前 已收到1个回答 举报

jiangyu3gis 幼苗

共回答了17个问题采纳率:88.2% 举报

解题思路:(1)利用椭圆和其“准圆”的标准方程及其定义即可得出;
(2)先设出点B、D的坐标并求出点A的坐标,利用向量的数量积得出
AD
AB
,再利用点B在椭圆上即可得出其取值范围;
(3)通过分类讨论,假设在椭圆C的“准圆”上任取一点P作直线与椭圆相切,联立直线与椭圆的方程,利用根与系数的关系求出直线是否满足两条直线垂直的条件即可.

(1)由题意可得:a=
3,c=
2,b=1,∴r=
(
3)2+12=2.
∴椭圆C的方程为
x2
3+y2=1,其“准圆”的方程为x2+y2=4;
(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).
设点B(x0,y0),则D(x0,-y0).


AB•

AD=(x0-2,y0)•(x0-2,-y0)=(x0−2)2−y02,
∵点B在椭圆
x2
3+y2=1上,∴
x02
3+y02=1,∴y

点评:
本题考点: 直线与圆锥曲线的关系;平面向量数量积的运算;椭圆的简单性质.

考点点评: 熟练掌握椭圆和圆的标准方程及其定义、向量的数量积、直线与椭圆相切问题时联立直线与椭圆的方程得出根与系数的关系、两条直线垂直的条件是解题的关键.

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.024 s. - webmaster@yulucn.com