若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.

若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.
我牛我COOL 1年前 已收到2个回答 举报

华丽的转音 幼苗

共回答了17个问题采纳率:82.4% 举报

解题思路:(1)由二次函数可设f(x)=ax2+bx+c(a≠0),由f(0)=1求得c的值,由f(x+1)-f(x)=2x可得a,b的值,即可得f(x)的解析式;
(2)欲使在区间[-1,1]上不等式f(x)>2x+m恒成立,只须x2-3x+1-m>0在区间[-1,1]上恒成立,也就是要x2-3x+1-m的最小值大于0,即可得m的取值范围.

(1)由题意可知,f(0)=1,解得,c=1,
由f(x+1)-f(x)=2x.可知,[a(x+1)2+b(x+1)+1]-(ax2+bx+1)=2x,
化简得,2ax+a+b=2x,


2a=2
a+b=0,
∴a=1,b=-1.
∴f(x)=x2-x+1;
(2)不等式f(x)>2x+m,可化简为x2-x+1>2x+m,
即x2-3x+1-m>0在区间[-1,1]上恒成立,
设g(x)=x2-3x+1-m,则其对称轴为x=
3
2,
∴g(x)在[-1,1]上是单调递减函数.
因此只需g(x)的最小值大于零即可,
g(x)min=g(1),
∴g(1)>0,
即1-3+1-m>0,解得,m<-1,
∴实数m的取值范围是m<-1.

点评:
本题考点: 函数恒成立问题;函数解析式的求解及常用方法.

考点点评: 本题主要考查了利用待定系数法求解二次函数的解析式,以及函数的恒成立与函数的最值求解的相互转化,主要涉及单调性在函数的最值求解中的应用.属于中档题.

1年前

3

无缘誓言 幼苗

共回答了1个问题 举报

1,令x=0,-1带入后面的等式,得f(1)=1,f(-1)=3建立三个方程组得a,b.c
2,令g(x)=f(x)-2x,可求其最小值,在令m小于其最小值就可求得m的取值范围
自己做做比较好的

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.017 s. - webmaster@yulucn.com