(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是______;
(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=______,DB=______;
②在AB上取一点P,可设AP=______,BP=______;
x2+9
+
y2+25
的最小值即为线段______和线段______长度之和的最小值,最小值为______.
jasmin1125 1年前 已收到1个回答 举报

ypwq6a0tm4aab 幼苗

共回答了21个问题采纳率:95.2% 举报

解题思路:(1)利用二次函数的顶点坐标即可得出函数的最值;
(2)①延长AC到点E,使CE=AC,连接BE,交直线l于点P,则点P即为所求,
②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD的延长线于点G,则有四边形ACDF、CEGD都是矩形,进而利用勾股定理求出即可;
(3)①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,
②在AB上取一点P,可设AP=x,BP=y,
x2+9
+
y2+25
的最小值即为线段 PC和线段 PD长度之和的最小值,最小值利用勾股定理求出即可.

(1)抛物线所对应的二次函数的最大值是4;

(2)①如图,点P即为所求.
(作法:延长AC到点E,使CE=AC,连接BE,交直线l于点P,则点P即为所求)
说明:不必写作法和证明,但要保留作图痕迹;不连接PA不扣分;
如延长BD到点M,使DM=BD,连接AM,同样可得到P点.
②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD的延长线于点G,则有四边形ACDF、CEGD都是矩形.
∴FD=AC=CE=DG=1,EG=CD=AF.
∵AB=3,BD=2,
∴BF=BD-FD=1,BG=BD+DG=3,
∴在Rt△ABF中,AF2=AB2-BF2=8,
∴AF=2
2,EG=2
2.
∴在Rt△BEG中,BE2=EG2+BG2=17,BE=
17.
∴PA+PB的最小值为
17.
即所用水管的最短长度为
17.

(3))①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,
②在AB上取一点P,可设AP=x,BP=y,



x2+9+
y2+25的最小值即为线段 PC和线段 PD长度之和的最小值,
∴作C点对称点C′,连接C′D,过C′点作C′E⊥DB,交于点E,
∵AC=BE=3,DB=5,AB=C′E=6,
∴DE=8,
C′D=

点评:
本题考点: 无理函数的最值;二次函数的最值;勾股定理;矩形的性质.

考点点评: 此题主要考查了函数最值问题与利用轴对称求最短路线问题,结合已知画出图象利用数形结合以及勾股定理得出是解题关键.

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.848 s. - webmaster@yulucn.com