如图,在直角三角形ABC的斜边AB上取两点D、E,使AD=AC,BE=BC.当∠B的度数变化时,试讨论

如图,在直角三角形ABC的斜边AB上取两点D、E,使AD=AC,BE=BC.当∠B的度数变化时,试讨论
∠DCE如何变化?说明你的根据.
zwz19871029 1年前 已收到5个回答 举报

心情飘逸得很 幼苗

共回答了20个问题采纳率:90% 举报

解题思路:根据等腰三角形的性质:等边对等角,以及三角形的内角和定理即可求得∠ECD的度数,即可作出判断.

不变化.
证明:∵AD=AC
∴∠ACD=∠ADC
同理,∠ECB=∠CEB
∵∠CEB+∠ADC+∠DCE=180°,
∴∠ACD+∠BCE+∠ECD=180°
即∠ACB+2∠ECD=180°
∴∠ECD=45°
则当∠B的度数变化时,∠DCE度数没有变化.

点评:
本题考点: 等腰三角形的性质.

考点点评: 本题主要考查了等腰三角形的性质:等边对等角,以及三角形的内角和定理,关键是理解∠ACD+∠BCE+∠ECD=180°即∠ACB+2∠ECD=180°.

1年前

3

redbbs 幼苗

共回答了5个问题 举报

1年前

2

ymycgy 幼苗

共回答了7个问题 举报

设角B为X ,用X表示角CDE与角CED,两角相加后发现为定值135,所以∠DCE为定值45

1年前

2

rr是爷 幼苗

共回答了67个问题 举报

不变

1年前

1

samuelee 幼苗

共回答了39个问题 举报

没有图片啊

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 20 q. 0.744 s. - webmaster@yulucn.com