如图,在矩形ABCD中,E是CD边上任意一点(不与点C,D重合),作AF⊥AE交CB的延长线于点F.

如图,在矩形ABCD中,E是CD边上任意一点(不与点C,D重合),作AF⊥AE交CB的延长线于点F.
(1)求证:△ADE∽△ABF;
(2)连接EF,M为EF的中点,AB=4,AD=2,设DE=x,
①求点M到FC的距离(用含x的代数式表示);
②连接BM,设BM2=y,求y与x之间的函数关系式,并直接写出BM的长度的最小值.
huanqiu8888 1年前 已收到1个回答 举报

xyhx8888 幼苗

共回答了22个问题采纳率:90.9% 举报

解题思路:(1)根据矩形的性质可得∠DAB=∠ABC=∠C=∠D=90°,再求出∠ABF=∠D=90°,根据同角的余角相等求出∠DAE=∠BAF,然后根据两组角对应相等的两个三角形相似证明;
(2)①取FC的中点H,连接MH,根据三角形的中位线平行于第三边并且等于第三边的一半可得MH∥DC,MH=[1/2]EC,然后表示出EC,即可得解;
②根据相似三角形对应边成比例列式求出BF,再表示出FH,BH,然后利用勾股定理列式整理即可得到y与x的关系式,再根据二次函数的最值问题解答.

(1)证明:∵在矩形ABCD中,∠DAB=∠ABC=∠C=∠D=90°,
∴∠ABF=∠D=90°,
∵AF⊥AE,
∴∠EAF=∠BAF+∠EAB=90°,
∵∠DAE+∠EAB=∠DAB=90°,
∴∠DAE=∠BAF,
又∵∠D=∠ABF=90°,
∴△ADE∽△ABF;

(2)①如图,取FC的中点H,连接MH,
∵M为EF的中点,
∴MH∥DC,MH=[1/2]EC,
∵在矩形ABCD中,∠C=90°,
∴MH⊥FC,即MH是点M到FC的距离,
∵DE=x,DC=AB=4,
∴EC=4-x,
∴MH=[1/2]EC=2-[1/2]x,
即点M到FC的距离为MH=2-[1/2]x;
②∵△ADE∽△ABF,
∴[DE/AD]=[BF/AB],
∴[x/2]=[BF/4],
∴BF=2x,FC=2+2x,FH=CH=1+x,
∴BH=|BF-HF|=|x-1|,
∵MH=2-[1/2]x,
∴在Rt△MHB中,BM2=BH2+MH2=(2-[1/2]x)2+(x-1)2=[5/4]x2-4x+5,
∴y=[5/4]x2-4x+5(0<x<4)
∵y=[5/4]x2-4x+5=[5/4](x2-[16/5]x+[64/25])+5-[16/5]=[5/4](x-[8/5])2+[9/5],
当x=[8/5]时,BM2有最小值[9/5],
此时,BM的最小值是
3
5
5.

点评:
本题考点: 相似形综合题.

考点点评: 本题是相似形综合题,主要利用了相似三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,二次函数的最值问题,难点在于(2)作辅助线构造出三角形的中位线.

1年前

8
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.081 s. - webmaster@yulucn.com