已知函数f(x)=ax+b1+x2(x≥0),且函数f(x)与g(x)的图象关于直线y=x对称,又g(1)=0,f(3)

已知函数f(x)=ax+b
1+x2
(x≥0)
,且函数f(x)与g(x)的图象关于直线y=x对称,又g(1)=0,f(
3
)=2-
3

(1)求f(x)的表达式及值域;
(2)问是否存在实数m,使得命题p:f(m2-m)<f(3m-4)和q:g(
m−1
4
)>
3
4
满足复合命题p且q为真命题?若存在,求出m的取值范围,若不存在,说明理由.
gsjygsbj 1年前 已收到1个回答 举报

大头豆豆 幼苗

共回答了16个问题采纳率:87.5% 举报

解题思路:(1)函数表达式的求解主要根据函数性质,如此题中f(x)与g(x)的图象关于直线y=x对称;求值域应先判断函数单调性,再求解
(2)复合命题p且q为真命题即p,q均为真命题,利用函数的单调性以及反函数的性质,求出两个命题不等式的解集即可求出结果.

(1)因为函数f(x)与g(x)的图象关于直线y=x对称,g(1)=0,则f(0)=1即b=1,
又由f(
3)=2−
3,得
3a+2=2−
3,可得a=-1,故f(x)的表达式为f(x)=
1+x2−x(x≥0)
f(x)=
1+x2−x=
1

1+x2+x在定义域[0,+∞)上单调递减,f(0)=1,又因为f(x)>0,所以f(x)的值域为(0,1]
(2)复合命题p且q为真命题即要求p,q均为真命题.
命题p:∵f(x)在定义域[0,+∞)上单调递减,
故命题p:f(m2-m)<f(3m-4)为真命题⇔m2-m>3m-4≥0⇔m≥
4
3且m≠2;
命题q:g(
m−1
4)>

点评:
本题考点: 函数与方程的综合运用;命题的真假判断与应用;函数的值域;函数解析式的求解及常用方法;函数单调性的性质.

考点点评: 本题考查函数与方程的综合应用,涉及函数的单调性、反函数、分式不等式的解法、命题的真假判断等知识,考查分析问题解决问题的能力.

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 1.253 s. - webmaster@yulucn.com