英语翻译In Fig.6 the temperatures within the workpiece at variou

英语翻译
In Fig.6 the temperatures within the workpiece at various depths below the surface are shown,as calculated for all grinding wheels for different depths of cut.These temperatures
are taken for the same step of the analysis shown in Figs 4 and 5 and are shown underneath the grinding wheel where the maximum temperatures are reached.In the same diagrams,the three critical temperatures for the 100Cr6 steel are also indicated.From Fig.6,the theoretical depth of the heat-affected zones can be determined for each wheel used and depth of cut.In Fig.6(a) it can be seen that there is no austenitic transformafion since the temperatures are not high enough.On the other hand,when grinding with wheel 6 and for a depth of cut of 0.05 mm,the austenific transformafion temperature is exceeded in the layers at depths up to 0.1 mm below the surface (see Fig.6(b)).A diagram is presented in Fig.7 to predict approximately the temperature on the surface and within the workpiece for grinding wheel 6 for different values of equivalent chip thickness,h,designated as The equivalent chip thickness includes the effect of the three grinding parameters and may be more suitable than the depth of cut for use for the optimisation of the grinding parameters.In order to observe or to limit its crifical value,it is not necessary to decrease the depth of cut and it is also possible to suitably change the grinding conditions.In the same diagram,the regions within the critical temperatures are also indicated by contour bands so that the heat affected zones can be predicted.Such diagrams can also be constructed for the other wheels,using results obtained from the finite-element model; they may be used as a guide for selecfing the optimal grinding conditions.
5.Conclusions
The commercial implicit finite element code MARC has been employed to simulate the grinding of hardened steels with aluminium oxide grinding wheels and the following conclusions may be drawn:
1.The maximum temperature and the distribufion of the temperature fields in the workpiece can be calculated successfully with the proposed model when the power or the tangential force per unit width of the workpiece during the process is known.
2.Using the temperature fields derived from the model,the heat-affected zones of the workpiece can be predicted,considering the critical temperatures for tempering,and martensitic and austenitic transformation.
ldb01 1年前 已收到2个回答 举报

刘函 幼苗

共回答了15个问题采纳率:86.7% 举报

图6温度在工件在不同深度的表面下面显示,作为计算所有砂轮不同切削深度.这些温度
采取同样的步骤的分析,显示在图4和图5显示在砂轮的最高温度达到.在同一个图表,三临界温度的100cr6钢也表明.从图6,理论深度的热影响区可确定为每个轮和切割深度.在图6(一)可以看出,有没有奥氏体transformafion由于温度不够高.另一方面,当磨轮6和一个切割深度为0.05毫米,这transformafion铸造奥氏体温度超过在层深度可达0.1毫米以下的表面(见图6(二)).图是在图7预测大约在表面和内部温度工件砂轮6不同的价值相当于芯片厚度,小时,指定为当量磨削厚度包括影响三磨削参数和可能更适合比深度削减用于优化磨削参数.以观察或限制其临界值,这是没有必要减少切削深度,它也可以适当改变研磨条件.在相同的图,区域内的临界温度也表示了等高线带使热影响区预测.这种图表也可以建造的其他车轮,使用结果的有限元模型;他们可能被用来指导植物最佳磨矿条件.
5.结论
商业隐式有限元代码马克被用来模拟磨削淬硬钢氧化铝砂轮,可以得出以下结论:
1.最高温度和温度分布的领域在工件可以成功地计算了当电源或切向力每单位宽度的工件的过程中是已知的.
2.使用温度域从模型,热影响区的工件可以预测,考虑到临界温度和回火,马氏体和奥氏体转变.

1年前

5

翻花鱼 幼苗

共回答了2个问题 举报

在图6的温度在工件表面下不同深度出现时,计算所有不同深处的砂轮切割。这些温度
是采取相同的措施的分析显示,在无花果里4和5显示在砂轮在温度达到最大值。在同一个图表,三个关键的温度水中钢100展望。从图6、理论深度可以确定热影响区各轮使用和切削深度。在图6(1)可以看出,没有奥氏体transformafion由于温度不是够高的了。另一方面,当磨砂轮、6和切削深度0.05毫米,austenif...

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 17 q. 0.033 s. - webmaster@yulucn.com