(2006•宣武区一模)已知函数f(x)的定义域为I,导数fn(x)满足0<f(x)<2且fn(x)≠1,常数c1为方程

(2006•宣武区一模)已知函数f(x)的定义域为I,导数fn(x)满足0<f(x)<2且fn(x)≠1,常数c1为方程f(x)-x=0的实数根,常数c2为方程f(x)-2x=0的实数根.
(1)若对任意[a,b]⊆I,存在x0∈(a,b),使等式f(b)-f(a)=(b-a)fn(x0)成立.求证:方程f(x)-x=0不存在异于c1的实数根;
(2)求证:当x>c2时,总有f(x)<2x成立;
(3)对任意x1、x2,若满足|x1-c1|<1,|x2-c1|<1,求证:|f(x1)-f(x2)|<4.
浪人桔 1年前 已收到1个回答 举报

kinki500 幼苗

共回答了23个问题采纳率:82.6% 举报

解题思路:(1)利用反证法.假设方程f(x)-x=0有异于c1的实根m,即f(m)=m,从而可得fn(x0)=1,这与fn(x)≠1矛盾;
(2)令h(x)=f(x)-2x,证明函数h(x)为减函数,可证当x>c2时,h(x)<0,从而可得结论;
(3)不妨设x1≤x2,根据fn(x)>0,可得f(x)为增函数,即f(x1)≤f(x2),利用fn(x)<2,可得函数f(x)-2x为减函数,利用绝对值不等式的性质,即可得证.

证明:(1)假设方程f(x)-x=0有异于c1的实根m,即f(m)=m,
则有m-c1=f(m)-f(c1)=(m-c1)fn(x0)成立.
因为m≠c1,所以必有fn(x0)=1,这与fn(x)≠1矛盾,
因此方程f(x)-x=0不存在异于c1的实数根.…(4分)
(2)令h(x)=f(x)-2x,
∵hn(x)=fn(x)-2<0,∴函数h(x)为减函数.
又∵h(c2)=f(c2)-2c2=0,∴当x>c2时,h(x)<0,即f(x)<2x成立.…(8分)
(3)不妨设x1≤x2,∵fn(x)>0,∴f(x)为增函数,即f(x1)≤f(x2).
又∵fn(x)<2,∴函数f(x)-2x为减函数,即f(x1)-2x1≥f(x2)-2x2
∴0≤f(x2)-f(x1)≤2(x2-x1).
即|f(x2)-f(x1)|≤2|x2-x1|.
∵|x2-x1|=|x2-c1+c1-x1|≤|x2-c1|+|x1-c1|<2,
∴|f(x1)-f(x2)|<4.…(15分)

点评:
本题考点: 函数与方程的综合运用;函数单调性的性质.

考点点评: 本题考查函数与方程的综合运用,考查反证法,考查函数的单调性,考查不等式的证明,综合性强.

1年前

6
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.029 s. - webmaster@yulucn.com