(2014•河南模拟)己知函数f(x)=lnx-lna,g(x)=aex,其中a为常数,函数y=f(x)和y=g(x)的

(2014•河南模拟)己知函数f(x)=lnx-lna,g(x)=aex,其中a为常数,函数y=f(x)和y=g(x)的图象在它们与坐标轴交点处的切线互相平行.
(1)求函数F(x)=f(x)-g(x-1)的单调区间;
(2)若不等式xf(x)-k(x+1)f[g(x-1)]≤0在区间[1,+∞)上恒成立,求实数k的取值范围.
籽浈 1年前 已收到1个回答 举报

bojovi2000 幼苗

共回答了9个问题采纳率:100% 举报

解题思路:(1)由函数f(x)=aex,g(x)=lnx-lna,我们可以求出函数y=f(x)的图象与Y轴的交点和y=g(x)的图象与X轴交点的坐标,求出两个函数的导函数后,根据函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行,即两函数在交点处的导数值相等,构造关于a的方程,解方程即可求出答案.
(2)不等式xf(x)-k(x+1)f[g(x-1)]≤0在区间[1,+∞)上恒成立,则xlnx-k(x2-1)≤0在区间[1,+∞)上恒成立,构造函数,分类讨论,确定函数的单调性,即可求实数k的取值范围.

(1)∵f(x)=aex
∴f′(x)=aex
函数f(x)=aex只于Y轴交于(0,a),
且f′(0)=a
又∵g(x)=lnx-lna,
∴g′(x)=[1/x],
又∵函数g(x)=lnx-lna只于X轴交于(a,0)点
∴g′(a)=[1/a]
又∵函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行
∴a=1
∴F(x)=lnx-ex-1
∴F′(x)=
1−xex−1
x,
令h(x)=1-xex-1,则h(x)在(0,+∞)上单调递减,且h(1)=0,
∴(0,1)上h(x)>0,F′(x)>0,函数单调递增;
(1,+∞)上h(x)<0,F′(x)<0,函数单调递减,
∴函数F(x)=f(x)-g(x-1)的单调增区间为(0,1),单调减区间为(1,+∞);
(2)不等式xf(x)-k(x+1)f[g(x-1)]≤0在区间[1,+∞)上恒成立,则xlnx-k(x2-1)≤0在区间[1,+∞)上恒成立,
令φ(x)=xlnx-k(x2-1)(x≥1),则φ′(x)=lnx+1-2kx,
令u(x)=lnx+1-2kx,则u′(x)=[1−2kx/x]
①k≤0,u′(x)>0,φ′(x)在[1,+∞)上单调递增,φ′(x)>φ′(1)=1-2k>0,函数单调递增,
∴φ(x)≥φ(1)=0,不合题意,舍去;
②0<k<[1/2],x∈(1,[1/2k]),u′(x)>0,φ′(x)在(1,[1/2k])上单调递增,φ′(x)>φ′(1)=1-2k>0,函数单调递增,∴φ(x)≥φ(1)=0,不合题意,舍去;
③k≥[1/2],u′(x)≤0在[1,+∞)上恒成立,φ′(x)在[1,+∞)上单调递减,φ′(x)φ′(1)=1-2k≤0,函数单调递减,
∴φ(x)≤φ(1)=0,即xlnx-k(x2-1)≤0在区间[1,+∞)上恒成立,
∴k的取值范围是[[1/2],+∞).

点评:
本题考点: 利用导数求闭区间上函数的最值;利用导数研究函数的单调性.

考点点评: 本题考查的知识点是函数与方程的综合应用,直线平行与斜率的关系,导数法求直线的斜率,函数恒成立问题,其难度大.

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.011 s. - webmaster@yulucn.com