已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°

已知:如图△ABC中,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且∠EDF=90°

(1)求证:△DEF为等腰直角三角形;
(2)求证:S四边形AEDF=S△BDE+S△CDF
(3)如果点E运动到AB的延长线上,F在射线CA上且保持∠EDF=90°,△DEF还仍然是等腰直角三角形吗?请画图说明理由.
**odel 1年前 已收到1个回答 举报

fupingyiyepiao 幼苗

共回答了19个问题采纳率:94.7% 举报

解题思路:(1)连接AD,根据等腰直角三角形的性质可得AD⊥BC,AD=BD,∠1=45°,从而得到∠1=∠B,再根据同角的余角相等求出∠2=∠4,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证;
(2)同理求出△ADE和△CDF全等,根据全等三角形的面积相等即可得证;
(3)依然成立,连接AD,根据等腰直角三角形的性质可得AD=BD,∠CAD=45°,再根据等角的补角相等求出∠DAF=∠DBE,然后利用“AAS”证明△BDE和△ADF全等,根据全等三角形对应边相等可得DE=DF,从而得证.

(1)证明:如图,连接AD,∵∠A=90°,AB=AC,D是斜边BC的中点,
∴AD⊥BC,AD=BD,∠1=45°,
∴∠1=∠B=45°,
∵∠EDF=90°,
∴∠2+∠3=90°,
又∵∠3+∠4=90°,
∴∠2=∠4,
在△BDE和△ADF中,

∠1=∠B
AD=BD
∠2=∠4,
∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴△DEF为等腰直角三角形;
(2)同理可证,△ADE≌△CDF,
所以,S四边形AEDF=S△ADF+S△ADE=S△BDE+S△CDF
即S四边形AEDF=S△BDE+S△CDF
(3)仍然成立.如图,连接AD,
∵∠BAC=90°,AB=AC,D是斜边BC的中点,


∴AD⊥BC,AD=BD,∠1=45°,
∵∠DAF=180°-∠1=180°-45°=135°,
∠DBE=180°-∠ABC=180°-45°=135°,
∴∠DAF=∠DBE,
∵∠EDF=90°,
∴∠3+∠4=90°,
又∵∠2+∠3=90°,
∴∠2=∠4,
在△BDE和△ADF中,

∠DAF=∠DBE
AD=BD
∠2=∠4,
∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴△DEF为等腰直角三角形.

点评:
本题考点: 等腰直角三角形;全等三角形的判定与性质.

考点点评: 本题考查了等腰直角三角形的性质,全等三角形判定与性质,作辅助线构造出全等三角形是解题的关键.

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.039 s. - webmaster@yulucn.com