求函数值域 (换元法来解)已知 x^2+ xy + y^2 = 3 ,x y 均为实数 求函数 x^2 - xy + y

求函数值域 (换元法来解)
已知 x^2+ xy + y^2 = 3 ,x y 均为实数
求函数 x^2 - xy + y^2 的取值范围!
静默davina 1年前 已收到1个回答 举报

无非无我 幼苗

共回答了14个问题采纳率:78.6% 举报

做变量替换
x=u-v/2,
y=v,
已知函数 x^2+ xy + y^2 = 3 变为
u^2+3/4*v^2 = 3 .
可知这是一个椭圆,有参数表示:
u=sqrt(3)cosθ,
v=2sinθ,
其中θ在0到2π之间.
故所求函数 x^2 - xy + y^2 可以转化为
u^2-2*u*v+7/4*v^2,
或者进一步转化为参数表示
3*cosθ^2-4*sqrt(3)*cosθ*sinθ+7*sinθ^2,进一步化简得
3*cosθ^2-4*sqrt(3)*cosθ*sinθ+7*sinθ^2
=3+2(1-cos(2θ))-2*sqrt(3)*sin(2θ)
=5-4(cos(2θ)*1/2+sin(2θ)*sqrt(3)/2)
=5-4(cos(2θ-π/3))
由于θ在0到2π之间可以取任意值,所以
所求函数的最大值和最小值分别为
5+4=9 和5-4=1,
并且可以求出函数达到最大值和最小值时对应的x和y的值分别为
x=sqrt(3)cos(π*11/12)-sin(π*11/12), y=2sin(π*11/12)

x=1,y=1.

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.008 s. - webmaster@yulucn.com