用分部积分法解∫ln(1+√x)dx

用分部积分法解∫ln(1+√x)dx
设谁为u设谁为dv,则du、v是什么?
aiwobieshangwo 1年前 已收到3个回答 举报

宅男小A 春芽

共回答了8个问题采纳率:75% 举报

先用换元法,再用分部法 ∫ u * v ' dx = ∫ u dv = u * v - ∫ v * u ' dx 这样是不容易出错的.
分部积分,
遇到 ∫ x^n sinx dx,∫ x^n cosx dx ,∫ x^n e^x dx 等,设 u = x^n ,v ' = sinx,cosx,e^x
遇到 ∫ x^n arctanx dx,∫ x^n lnx dx ,设 u = arctanx,e^x,v ‘ = x^n ,
遇到 ∫ e^x sinx dx,∫ e^x cosx dx ,要用两次分部积分,……

1年前

3

快乐猪仔 幼苗

共回答了85个问题 举报

∫udv=uv-∫vdu
令√x=t x=t²
dx=dt²
∫ln(1+√x)dx
=∫ln(1+t)dt² (这里令u=ln(1+t),v=t²)
=t²ln(1+t)-∫t²dln(1+t)
=t²ln(1+t)-∫t²/(1+t)dt
=t²l...

1年前

2

好运福来 果实

共回答了4647个问题 举报

∫ln(1+√x)dx
=xln(1+√x)-∫x/(1+√x)*1/(2√x)dx
=xln(1+√x)-1/2∫√x/(1+√x)dx
=xln(1+√x)-1/2∫(1+√x-1)/(1+√x)dx
=xln(1+√x)-1/2x+1/2∫dx/(1+√x)
√x=t,x=t^2,dx=2tdt
1/2∫dx/(1+√x)
=1/2∫2...

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 18 q. 0.031 s. - webmaster@yulucn.com