英语翻译硬质合金一直深受研究学者的青睐.但传统的WC-Co硬质合金已经不能够满足在极端条件下的现代工业的需求,再加上当前

英语翻译
硬质合金一直深受研究学者的青睐.但传统的WC-Co硬质合金已经不能够满足在极端条件下的现代工业的需求,再加上当前W和Co的成本较高,因此用Ni替代Co作为硬质合金的粘结相,同时也用Ti(C,N)部分取代WC的YT类硬质合金应运而生.由于YT类硬质合金相比传统WC-Co硬质合金具有更高的硬度、耐磨性、耐蚀性以及高温稳定性,同时又保持了硬质合金的韧性.因此YT类硬质合金受到了极大的重视,而且发展迅速.但目前很少有人研究高Ti的硬质合金组织和性能.所以,本课题探究了不同WC与Ti(C,N)质量百分比对高Ti-WC-Ni硬质合金的组织和性能的影响.球磨72小时,在1440℃的温度真空烧结,得到5组实验试样,测试试样的孔隙度、密度、硬度、抗弯强度,并用SEM观察试样的显微组织以及抗弯断口的显微组织,并利用显微组织的表征分析其力学性能变化规律的原因.实验制备了五组不同WC与Ti(C,N)质量百分比的硬质合金试样,比例分别为A 2:6、B 3:5、C 4:4、D 5:3、E 6:2.实验结果表明:随着Ti(C,N)质量百分比的增加,组织中黑芯/灰环结构逐渐增加,白芯/灰环结构逐渐减少;试样致密度逐渐下降,并在C组时下降最快,为0.72%;试样硬度逐渐上升,并在C组时上升最快,为0.6 HRA;试样抗弯强度逐渐下降,并在C组时下降最快,为221Mpa.通过对断口扫描电镜的观察发现,其主要是穿晶断裂.
zhanli2008 1年前 已收到1个回答 举报

fishcwr716 幼苗

共回答了20个问题采纳率:95% 举报

Carbide has been well received by researchers of all ages. However, the conventional WC-Co cemented carbide has not been satisfied in extreme conditions of demand for modern industry, coupled with the current high cost of W and Co, as a result of substituting Co with Ni alloy binder phase, and also used Ti (C, N) partially replace the WC carbide YT class emerged. As compared to the traditional YT class carbide WC-Co cemented carbide has a higher hardness, wear resistance, corrosion resistance and high temperature stability, while maintaining the toughness of cemented carbide. So YT class carbide has been a great emphasis on, and growing rapidly. But few studies of high-Ti alloy microstructure and properties. Therefore, this project explores the different WC and Ti (C, N) the percentage of high quality Ti-WC-Ni alloy microstructure and properties of. Ball milling for 72 hours at a temperature of 1440 ℃ vacuum sintering, to give 5 set of experimental samples, test specimens porosity, density, hardness, bending strength, and the sample was observed by SEM, and the microstructure of the microstructure of the flexural fracture organize, and use to characterize the microstructure variation of the mechanical properties of the reasons. Was prepared from five different WC and Ti (C, N) carbide sample mass percentage, the ratio of A 2:6, B 3:5, C 4:4, D 5:3, E 6:2 . The experimental results show that: with Ti (C, N) mass percentage increases, tissue black core / gray ring structure gradually increased, white core / gray ring structure gradually decreased; sample density decreased and the decrease in the C group, fastest, 0.72%; specimen hardness gradually increased, and the fastest growing in the C group for 0.6 HRA; specimen bending strength gradually decreased, and the fastest decline in the C group, is 221Mpa. By scanning electron microscopy of fracture observed, which is mainly transgranular fracture.

1年前

1
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.020 s. - webmaster@yulucn.com