已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则

已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为______.
wfj_chenfeng 1年前 已收到1个回答 举报

观竹听雨 幼苗

共回答了13个问题采纳率:92.3% 举报

解题思路:先对函数进行求导,由题意可得f′(2)=0,f′(1)=-3,代入可求出a、b的值,进而可以求出函数的单调区间,函数的极大值为f(0)=c,极小值为f(2)=c-4,即可得出函数的极大值与极小值的差

对函数求导可得f′(x)=3x2+6ax+3b,
因为函数f(x)在x=2取得极值,所以f′(2)=3•22+6a•2+3b=0
即4a+b+4=0①
又因为图象在x=1处的切线与直线6x+2y+5=0平行
所以f′(1)=3+6a+3b=-3
即2a+b+2=0②
联立①②可得a=-1,b=0
所以f′(x)=3x2-6x=3x(x-2)
当f′(x)>0时,x<0或x>2;当f′(x)<0时,0<x<2
∴函数的单调增区间是 (-∞,0)和(2,+∞);函数的单调减区间是(0,2)
因此求出函数的极大值为f(0)=c,极小值为f(2)=c-4
故函数的极大值与极小值的差为c-(c-4)=4
故答案为4

点评:
本题考点: 利用导数研究曲线上某点切线方程;函数在某点取得极值的条件;利用导数研究函数的极值.

考点点评: 本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题.

1年前

3
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 2.031 s. - webmaster@yulucn.com