设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:

设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
(Ⅰ)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f″(ξ)=g″(ξ).
长藤挂铃 1年前 已收到1个回答 举报

ruanhui_1983 春芽

共回答了13个问题采纳率:84.6% 举报

解题思路:(I)两个函数在同一个点的函数值相等,可以直接由条件“f(x),g(x)在[a,b]上存在相等的最大值”得到
(II)两个函数在同一个点处的二阶导数值相等,根据条件“f(x),g(x)在[a,b]上内二阶可导”和“f(a)=g(a),f(b)=g(b)”,利用两次洛尔定理可得

证明:(I)由f(x),g(x)在(a,b)内存在相等的最大值,
①若在某点c∈(a,b)同时取得最大值,则f(c)=g(c),此时的c就是所求点,即存在η∈(a,b),使得f(η)=g(η);
②若两个函数取得最大值的点不同,设f(c)=maxf(x),g(d)=maxg(x),f(c)=g(d).
则有f(c)-g(c)>0,g(d)-f(d)<0,
因此函数F(x)=f(x)-g(x)在[c,d]或[d,c]上满足零点定理的条件,
故在(c,d)或(d,c)内肯定存在η,使得f(η)=g(η)
综合①②,存在η∈(a,b),使得f(η)=g(η)
(II)由(1)和洛尔定理在区间(a,η),(η,b)内分别存在一点{ξ}_{1}和{ξ}_{2},使得
f(ξ1)=0,f′(ξ2)=0
在区间(ξ1,ξ2)内对函数F(x)=f(x)-g(x)用洛尔定理,即
∃ξ∈(ξ1,ξ2)⊂(a,b),F''(ξ)=f''(ξ)-g''(ξ)=0
即∃ξ∈(a,b),使得f″(ξ)=g″(ξ).

点评:
本题考点: 用罗尔定理判断导函数根的存在问题;有界闭区域上连续函数的性质介值定理.

考点点评: 此题是两个基础知识点“零点定理”和“洛尔定理的综合”,要将题目转化成这两个定理的形式

1年前

2
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.010 s. - webmaster@yulucn.com