已知抛物线x2=4y的焦点为F,过F任作直线l(l与x轴不平行)交抛物线分别于A,B两点,点A关于y轴对称点为C,

已知抛物线x2=4y的焦点为F,过F任作直线l(l与x轴不平行)交抛物线分别于A,B两点,点A关于y轴对称点为C,
(1)求证:直线BC与y轴交点D必为定点;
(2)过A,B分别作抛物线的切线,两条切线交于E,求
|AB|
|DE|
的最小值,并求当
|AB|
|DE|
取最小值时直线l的方程.
有效用户名 1年前 已收到1个回答 举报

呆呆鱼是我 幼苗

共回答了14个问题采纳率:78.6% 举报

解题思路:(1)设出直线l的方程,和抛物线方程联立后得到关于x的一元二次方程,利用根与系数关系得到两个交点A,B的横坐标的和与积,由对称性得到A关于y轴的对称点C,写出直线BC的方程后由线系方程可证过定点;
(2)求出函数的导函数,写出过A,B的切线方程,把两切线方程分别作差和作和后求出两切线焦点的纵坐标,则|DE|可求,由弦长公式求出|AB|,作比后利用基本不等式求最值,并求出
|AB|
|DE|
取最小值时直线l的方程.

(1)证明:设A(x1,y1),B(x2,y2),
∵抛物线y=
x2
4的焦点为F(0,1),
∴可设直线l的方程为:y=kx+1(k≠0).
联立

y=kx+1
y=
x2
4,消去y并整理得:x2-4kx-4=0
所以x1+x2=4k,x1x2=-4
由对称性知C(-x1,y1),kCB=
y2−y1
x2+x1=
x22−x12
4(x2+x1)=
x2−x1
4
直线BC的方程为y−
x22
4=
x2−x1
4(x−x2),即y=
x2−x1
4x+
x1x2
4=
x2−x1
4x−1
∴直线BC与y轴交于定点D(0,-1)
(2)f′(x)=
x
2,∴过点A的切线方程为:y−
x12
4=

点评:
本题考点: 直线与圆锥曲线的综合问题.

考点点评: 本题主要考查抛物线的定义和直线与曲线的相切问题,解决此类问题的必须熟悉曲线的定义和曲线的图形特征,考查抛物线的应用,关键是看清题中给出的条件,灵活运用韦达定理,中点坐标公式进行求解.这也是高考常考的知识点,该题是难题.

1年前

9
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.028 s. - webmaster@yulucn.com