1.求证:全体整数的集合可以划分为有序三元组(a,b,c),使得每组的a^3 b+b^3 c+c^3 a的绝对值都是完全

1.求证:全体整数的集合可以划分为有序三元组(a,b,c),使得每组的a^3 b+b^3 c+c^3 a的绝对值都是完全平方数
2.已知关于x的方程lg(4x^2-(8a-1)x+5a^2)+x^2+(1-2a)x+2a^2=lg(x^2-2(a+1)x-a^2)恰有一个实数根,求实参数a的所有可能值
3.已知正整数数列{An}满足A0=m,A n+1=An ^5+487.试求m的值,使得{An}中完全平方数的个数最大
4.求所有正整数组(a,b,p,n),使得p为素数,且a^3+b^3=p^n
5.确定是否存在一个正整数n,n无平方因子,恰好被2011个不同的质数整除,而且2^n+1被n整除
6.
selinabmw745 1年前 已收到2个回答 举报

jackieyin 幼苗

共回答了17个问题采纳率:76.5% 举报

3.显然m≡0,1,2,3(mod4),下面依次讨论.
若m≡0(mod4),那么A[1]≡m^5+487≡487≡3(mod4),A[2]≡A[1]^5+487≡(-1)^5+487≡2(mod4),A[3]≡A[2]^5+487≡3(mod4),这样易得A[4]≡2(mod4),A[5]≡3(mod4),……,这样依次循环.而完全平方数对4取模应余0或1,这样A[n]中至多只有一个完全平方数(A[0]).
若m≡1(mod4),那么易知A[1]≡0(mod4),A[2]≡3(mod4),A[3]≡2(mod4),A[4]≡3(mod4),……,此时至多有2个完全平方数(A[0]和A[1]).
同样的分析,若m≡2或3(mod4),那么A[n]中不可能有完全平方数.
由上知A[n]中至多有2个完全平方数,且只可能为A[0]和A[1],下面求m的值使A[0]和A[1]都为完全平方数.
设A[0]=m=k²,那么设A[1]=m^5+487=k^10+487=n²,∴487=n²-k^10=(n-k^5)(n+k^5).注意到487是质数,那么n-k^5=1,n+k^5=487,解得k=3,∴m=9.经检验,m=9时A[0]和A[1]均为完全平方数,∴所求m即为9.

1年前

7

caicai301 幼苗

共回答了83个问题 举报

我做出来了3-5题,至于1、2题,想出来了再补充,对了,你第一题的题意似乎有些不明,能不能再写清楚一点。
3.显然m≡0,1,2,3(mod4),下面依次讨论。
若m≡0(mod4),那么A[1]≡m^5+487≡487≡3(mod4),A[2]≡A[1]^5+487≡(-1)^5+487≡2(mod4),A[3]≡A[2]^5+487≡3(mod4),这样易得A[4]≡2(mod...

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 18 q. 0.670 s. - webmaster@yulucn.com