如何证明X的平方=Y的平方+1998无整数解

断桥诗轩 1年前 已收到3个回答 举报

哥儿俩好 幼苗

共回答了26个问题采纳率:96.2% 举报

x^2-y^2=1998
(x+y)(x-y)=1998
1998分解质因数1998=2*3*3*3*37
因为x+y和x-y要么都是奇数,要么都是偶数
乘积为偶数,所以x+y和x-y都是偶数
而1998的因数中只有一个2,不能分解为两个偶数的积
所以原方程无整数解.

1年前

8

魔头Vs猪猪 幼苗

共回答了40个问题 举报

x^2-y^2=1998=(x-y)(x+y)
(x+y),(x-y)同奇偶
则x^2-y^2要么是四的倍数,要么是奇数。
1998是偶数,却不是四的倍数

1年前

2

狼批羊皮 幼苗

共回答了33个问题 举报

因为x²-y²=1998,即(x-y)(x+y)=1998.
而1998=2×3×3×3×37.
所以当把1998拆成两个数乘积的时候必是一个奇数一个偶数。
(如果两个都是偶数乘起来必是4的倍数,而1998不是。
如果两个都是奇数乘起来不可能是偶数。)
所以令x-y=p,x+y=q.那么p+q必是奇数,所以x=(p+q)/2不是整数。...

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 18 q. 0.031 s. - webmaster@yulucn.com