cinderella4
幼苗
共回答了20个问题采纳率:85% 举报
∵数列{an}满足a(n+1)/an=q
∴{an}是等比数列,公比为q
∵bn=na1+(n-1)a2+…+2an-1+an
n=1时,b1=a1,
n=2时,b2=2a1+a2
∵ b1=1.b2=3/2
∴a1=1,2*1+a2=3/2,a2=-1/2
∴q=a2/a1=-1/2
∴an=(-1/2)^(n-1)
bn=n+(n-1)*(-1/2)+(n-2)*1/4+.+(-1/2)^(n-1) (1)
-1/2bn=n(-1/2)+(n-1)*(-1/2)^2+(n-2)*(-1/2)^3+.+2*(-1/2)^(n-1)+(-1/2)^n (2)
(1)-(2):
3/2bn=n-(-1/2)-(-1/2)^2-(-1/2)^3-.-(-1/2)^(n-1)-(-1/2)^n
=n-(-1/2)[1-(-1/2)^(n-1)]/(3/2)-(-1/2)^n
=n+1/3-1/3*(-1/2)^(n-1)+1/2*(-1/2)^(n-1)
=n+1/3+1/6*(-1/2)^(n-1)
bn=(6n+2)/9+1/9*(-1/2)^(n-1)
bn=[6n+2+(-1/2)^(n-1) ]/9
1年前
8