如图,已知:等边三角形ABC,点D是AB的中点,过点D作DF⊥AC,垂足为F,过点F作FE⊥BC,垂足为E,若三角形AB

如图,已知:等边三角形ABC,点D是AB的中点,过点D作DF⊥AC,垂足为F,过点F作FE⊥BC,垂足为E,若三角形ABC的边长为4.
求:(1)线段AF的长度;(2)线段BE的长度.
efefsfsf 1年前 已收到1个回答 举报

一柳_ 幼苗

共回答了15个问题采纳率:86.7% 举报

解题思路:(1)根据等边三角形各内角为60°的性质,可以求得∠ADF=30°,即可求得AD=2AF;
(2)根据与(1)同样的道理,即可求得CF=2CE,根据BE=BC-CE即可求的BE的长.

(1)∵D是AB的中点,
∴AD=[AB/2]=2,
∵等边三角形ABC中∠A=∠C=60°,
且DF⊥AC,
∴∠ADF=180°-90°-60°=30°,
在Rt△ADF中,AF=[AD/2]=1;
(2)FC=AC-AF=4-1=3,
同理,在Rt△FEC中,EC=[FC/2]=1.5,
∴BE=BC-EC=4-1.5=2.5.
故答案为:AF=1,BE=2.5.

点评:
本题考点: 等边三角形的性质;含30度角的直角三角形.

考点点评: 本题考查了三角形各边长相等、各内角为60°的性质,30°角在直角三角形中运用,本题中根据特殊角的三角函数值求解是解题的关键.

1年前

6
可能相似的问题
Copyright © 2022 YULUCN.COM - 雨露学习互助 - 16 q. 0.019 s. - webmaster@yulucn.com