(2010•巢湖模拟)如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分

(2010•巢湖模拟)如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求三棱锥C-BEP的体积.
热色婆 1年前 已收到1个回答 举报

梦醒时分00 春芽

共回答了16个问题采纳率:87.5% 举报

解题思路:(Ⅰ)欲证AF∥平面PCE,根据直线与平面平行的判定定理可知只需证AF与平面PCE内一直线平行,取PC的中点G,连接FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,满足定理条件;
(Ⅱ)欲证平面PCE⊥平面PCD,根据面面垂直的判定定理可知在平面PCE内一直线与平面PCD垂直,而根据题意可得EG⊥平面PCD;
(Ⅲ)三棱锥C-BEP的体积可转化成三棱锥P-BCE的体积,而PA⊥底面ABCD,从而PA即为三棱锥P-BCE的高,根据三棱锥的体积公式进行求解即可.

证明:(Ⅰ)取PC的中点G,
连接FG、EG
∴FG为△CDP的中位线
∴FG


.
.
1
2CD
∵四边形ABCD为矩形,
E为AB的中点
∴AE


.
.
1
2CD
∴FG


.
.AE
∴四边形AEGF是平行四边形(2分)
∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE
∴AF∥平面PCE(4分)

(Ⅱ)∵PA⊥底面ABCD
∴PA⊥AD,PA⊥CD,
又AD⊥CD,PA∩AD=A
∴CD⊥平面ADP又AF⊂平面ADP,
∴CD⊥AF
在RT△PAD中,∠PDA=45°
∴△PAD为等腰直角三角形,
∴PA=AD=2(6分)
∵F是PD的中点,∴AF⊥PD,又CD∩PD=D
∴AF⊥平面PCD
∵AF∥EG,
∴EG⊥平面PCD,又EG⊂平面PCE
∴平面PCE⊥平面PCD(8分)

(Ⅲ)PA⊥底面ABCD
在Rt△BCE中,BE=1,BC=2,(10分)
∴三棱锥C-BEP的体积
VC-BEP=VP-BCE=[1/3S△BCE•PA=
1
3•
1
2•BE•BC•PA=
1
3•
1
2•1•2•2=
2
3](12分)

点评:
本题考点: 直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的性质;平面与平面垂直的判定.

考点点评: 本题主要考查了直线与平面平行的判定,以及平面与平面垂直的判定和三棱锥的体积,属于中档题.

1年前

8
可能相似的问题
Copyright © 2022 YULUCN.COM - 雨露学习互助 - 16 q. 0.013 s. - webmaster@yulucn.com