提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边

提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE
分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.
学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.
解决问题:请你选择上述一种方法给予证明.
问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.
我不说愁谁敢说 1年前 已收到1个回答 举报

我是coffee猫 幼苗

共回答了15个问题采纳率:66.7% 举报

解题思路:对于图1,根据正方形的性质得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,则四边PMCN为矩形,根据角平分线性质得PM=PN,根据四边形内角和得到∠PBC+∠CEP=180°,再利用等角的补角相等得到∠PBM=∠PEN,然后根据“AAS”证明△PBM≌△PEN,则PB=PE;
对于图2,连结PD,根据正方形的性质得CB=CD,CA平分∠BCD,根据角平分线的性质得∠BCP=∠DCP,再根据“SAS”证明△CBP≌△CDP,则PB=PD,∠CBP=∠CDP,根据四边形内角和得到∠PBC+∠CEP=180°,再利用等角的补角相等得到∠PBC=∠PED,则∠PED=∠PDE,所以PD=PE,于是得到PB=PD;
对于图3,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,根据正方形的性质得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,得到四边PMCN为矩形,PM=PN,则∠MPN=90°,利用等角的余角相等得到∠BPM=∠EPN,然后根据“AAS”证明△PBM≌△PEN,所以PB=PE.

证明:如图1,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBM=∠PEN,
在△PBM和△PEN中


∠PMB=∠PNE
∠PBM=∠PEN
PM=PN
∴△PBM≌△PEN(AAS),
∴PB=PE;

如图2,连结PD,
∵四边形ABCD为正方形,
∴CB=CD,CA平分∠BCD,
∴∠BCP=∠DCP,
在△CBP和△CDP中


CB=CD
∠BCP=∠DCP
CP=CP,
∴△CBP≌△CDP(SAS),
∴PB=PD,∠CBP=∠CDP,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBC=∠PED,
∴∠PED=∠PDE,
∴PD=PE,
∴PB=PD;

如图3,PB=PE还成立.
理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∴∠MPN=90°,
∵∠BPE=90°,∠BCD=90°,
∴∠BPM+∠MPE=90°,
而∠MEP+∠EPN=90°,
∴∠BPM=∠EPN,
在△PBM和△PEN中


∠PMB=∠PNE
∠BPM=∠EPN
PM=PN,
∴△PBM≌△PEN(AAS),
∴PB=PE.

点评:
本题考点: 四边形综合题.

考点点评: 本题考查了四边形的综合题:熟练掌握正方形的性质,会运用全等三角形的知识解决线段相等的问题.

1年前

4
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.021 s. - webmaster@yulucn.com