已知数列{an}满足a1=1/2,sn=n^2an,求通项an

xich423007 1年前 已收到2个回答 举报

娃哈哈wahaha 种子

共回答了10个问题采纳率:90% 举报

∵s[n]=n^2a[n]
∴s[n+1]=(n+1)^2a[n+1]
将上述两式相减,得:
a[n+1]=(n+1)^2a[n+1]-n^2a[n]
(n^2+2n)a[n+1]=n^2a[n]
即:a[n+1]/a[n]=n/(n+2)
于是:【由于右边隔行约分,多写几行看得清楚点】
a[n+1]/a[n]=n/(n+2) 【这里保留分母】
a[n]/a[n-1]=(n-1)/(n+1) 【这里保留分母】
a[n-1]/a[n-2]=(n-2)/n
a[n-2]/a[n-3]=(n-3)/(n-1)
.
a[5]/a[4]=4/6
a[4]/a[3]=3/5
a[3]/a[2]=2/4 【这里保留分子】
a[2]/a[1]=1/3 【这里保留分子】
将上述各项左右各自累乘,得:
a[n+1]/a[1]=(1*2)/[(n+1)(n+2)]
∵a[1]=1/2
∴a[n+1]=1/[(n+1)(n+2)]
∴通项a[n]=1/[n(n+1)]

1年前

8

bhhlb 幼苗

共回答了11个问题 举报

sn=n^2an ........S(n-1)=(n-1)^2a(n-1)
Sn-S(n-1)=an=n^2an-(n-1)^2a(n-1)
所以 an=[(n-1)^2/(n^2-1)]a(n-1)
a(n-1)={(n-2)^2/[(n-2)(n+2)]}a(n-2)
.
....

1年前

1
可能相似的问题
Copyright © 2022 YULUCN.COM - 雨露学习互助 - 17 q. 0.018 s. - webmaster@yulucn.com