设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为(

设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为(  )
A. (-1,0)∪(1,+∞)
B. (-1,0)∪(0,1)
C. (-∞,-1)∪(1,+∞)
D. (-∞,-1)∪(0,1)
牛盲HP 1年前 已收到1个回答 举报

雪轩1231 幼苗

共回答了18个问题采纳率:77.8% 举报

解题思路:由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(1)=0得g(1)=0、还有g(-1)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.

设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)>0,
∴函数g(x)在区间(0,+∞)上是增函数,
∵f(x)是定义在R上的偶函数,
∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(-∞,0)上是增函数,
∵f(1)=0,
∴f(-1)=0;
即g(-1)=0,g(1)=0
∴xf(x)>0化为g(x)>0,
设x>0,故不等式为g(x)>g(1),即1<x;
设x<0,故不等式为g(x)>g(-1),即-1<x<0.
故所求的解集为(-1,0)∪(1,+∞)
故选A.

点评:
本题考点: 函数奇偶性的性质;利用导数研究函数的单调性.

考点点评: 本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性和奇偶性的关系对不等式进行转化,注意函数值为零的自变量的取值.

1年前

7
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 16 q. 0.032 s. - webmaster@yulucn.com