yi ge 是否存在常数a,b使等式1^2/(1*3)+2^2/(3*5)+.+n^2/(2n-1)*(2n+1)=(a

yi ge
是否存在常数a,b使等式1^2/(1*3)+2^2/(3*5)+.+n^2/(2n-1)*(2n+1)=(a*n^2+n)/(bn+2)对一切n属于N*都成立
寻梦fei 1年前 已收到4个回答 举报

yuansiping 幼苗

共回答了15个问题采纳率:86.7% 举报

首先:n^2/(2n-1)*(2n+1)=(1/2)*[n^2/(2n-1)-n^2/(2n+1)]
那么就有:
1^2/(1*3)+2^2/(3*5)+.+n^2/(2n-1)*(2n+1)
=(1/2)*[1/1-1/3+2^2/3-2^2/5+3^2/5-3^3/7+.+(n-1)^2/(2n-3)
-(n-1)^2/(2n-1)+n^2/(2n-1)-n^2/(2n+1)]
=(1/2)*{1+(2^2-1^2)/3+(3^2-2^2)/5+...[n^2-(n-1)^2]/(2n-1)-n^2/(2n+1)}
=(1/2)*[1+1+1+.1-n^2/(2n+1)]
=(1/2)*[n-n^2/(2n+1)]
=(1/2)*(n^2+n)/(2n+1)
所以就是有:
当1^2/(1*3)+2^2/(3*5)+.+n^2/(2n-1)*(2n+1)=(a*n^2+n)/(bn+2)对一切n属于N都成立时,
也就是:
(n^2+n)/2(2n+1)=(a*n^2+n)/(bn+2)=(n^2+n)/(4n+2)
对照一下,就可以得到:
当a=1;;b=4时,
这个等式对一切n属于N都成立..

1年前

8

orb2ce4xh21ba 幼苗

共回答了7个问题 举报

存在 a=1, b=4;
方法1:
由n^2/(2n-1) = (n-1+1)^2/(2n-1) = (n-1)^2 /(2n-1) + 1;
得n^2/(2n-1)*(2n+1) = (1/2)*[n^2/(2n-1) - n^2/(2n+1)] = (1/2)*[(n-1)^2/(2n-1) - n^2/(2n+1) + 1]
所以:
原式= 1/2[...

1年前

2

此人非池中物 幼苗

共回答了37个问题 举报

当然有对等式1^2/(1*3)+2^2/(3*5)+.....+n^2/(2n-1)*(2n+1)
=(a*n^2+n)/(bn+2)代特殊值如1,2得a,b
然后就可以用数学归纳法证明之

1年前

1

abmm7 幼苗

共回答了74个问题 举报

a=1 b=4
k^2/(2k-1)*(2k+1)=1/4 +1/8*[1/(2k-1)-1/(2k+1)]
求和(k=1 到n)
得到原式=n/4+1/8*[1-1/(2n+1)]=(n^2+n)/(4n+2)

1年前

0
可能相似的问题
Copyright © 2024 YULUCN.COM - 雨露学习互助 - 19 q. 0.016 s. - webmaster@yulucn.com