设正项数列﹛An﹜的前n项和为Sn,若﹛An﹜和﹛√Sn﹜都是等差数列,且公差相等,则A1=?

来时的路 1年前 已收到1个回答 举报

w75578121 幼苗

共回答了21个问题采纳率:95.2% 举报

设公差为d,首项a1
Sn=na1+n(n-1)d/2
√Sn=√(S1)+(n-1)d=√(a1)+(n-1)d 平方
Sn=a1+2√(a1)*(n-1)d+(n-1)^2d^2
na1+n(n-1)d/2=a1+2√(a1)*(n-1)d+(n-1)^2d^2
(n-1)a1+n(n-1)d/2=2√(a1)*(n-1)d+(n-1)^2d^2
a1+nd/2=2√(a1)d+(n-1)d^2
nd/2-nd^2=2√(a1)d-d^2-a1
n(d/2-d^2)=2√(a1)d-d^2-a1
因为对任意n∈N+都成立,所以
d/2-d^2=0
d=0或d=1/2
(1) d=0时 2√(a1)d-d^2-a1=0 a1=0 正项数列 舍
(2) d=1/2 2√(a1)d-d^2-a1=0 a1=1/4

1年前

7
可能相似的问题
Copyright © 2022 YULUCN.COM - 雨露学习互助 - 16 q. 0.016 s. - webmaster@yulucn.com